
Vulkan-ize VirGL
Proposal for GSoC 18
Nathan Gauër

Name:
Email:
Phone
Programming languages: C / C++
Past open source contributions: PoC for VirGL on Windows
Sample source code, hobby projects: https://github.com/Keenuts
Website: www.studiopixl.com/blog

https://github.com/Keenuts
https://www.studiopixl.com/blog


Summary

Summary 2
Introduction 3
Motivation 3
Understanding 4

Vulkan on Linux 4
QEMU Consoles 5
VirGL Integration 6
VirGL and Vulkan 6

Project presentation 7
QEMU and VirGL 7
VirGL and Vulkan 7

Timeline 8
GSOC 12 weeks planning 8

First period 8
Second period 8
Third period 8

https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.t4ubdlun0qo7
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.t4ubdlun0qo7
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.pga3nw9u9fir
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.pga3nw9u9fir
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.6rbi16n3temv
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.6rbi16n3temv
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.mcx2nc46koia
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.mcx2nc46koia
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.vsm3s1f7pzv6
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.vsm3s1f7pzv6
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.10gvdeamlc65
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.10gvdeamlc65
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.d7h6b313swaj
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.d7h6b313swaj
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.hdqai08ep040
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.hdqai08ep040
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.n4uv5f3xqjt4
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.n4uv5f3xqjt4
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.bfc0y3wzuz2g
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.bfc0y3wzuz2g
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.saoxjom2tgiy
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.saoxjom2tgiy
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.2vnveh730bw8
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.2vnveh730bw8
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.2kmb3ggusmmy
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.2kmb3ggusmmy
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.c9f97dp36yan
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.c9f97dp36yan
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.4km02v1h6l1t
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.4km02v1h6l1t
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.llnqv36ahpi4
https://docs.google.com/document/d/1KO01Z2OnKWu2P92CqB5VhkgAw07z6HVEy5_6siD3A7o/edit?resourcekey=0-liFLt0oDiygDqAZYaBYXEg#heading=h.llnqv36ahpi4


Introduction
I’m Nathan, a French student in Computer Science. I expect to graduate in 2019. Since

last year, I joined a laboratory in my school. In this lab I worked on several subjects like VirGL,
CAN bus reversing, non-biased rendering algorithms, and a small 32 bit kernel.
These projects taught me a lot. However, I always go back to one main subject: graphics.
This fascination takes its roots from my early exposure to 3D software and drawings. It started
as a simple hobby, and slowly became my favorite subject.
You can see some subjects I worked on on either my blog, of GitHub.
Last year, I worker on a PoC to provide 3D acceleration on Windows guests running on QEMU.
This year, I had two opportunities, either continue working on this subject, or try this other one.
Both closely related to my subject of interest.

Motivation
Vulkan is a low-level, low-overhead API. Validation layers are removed, state-tracking is

simplified, and the user is free to use all the resources the hardware provides.
This API is getting more popular each year, thus, adding a decent support for it on QEMU will be
a mandatory step.

Last year, I had the opportunity to work on VirGL support for Windows. Through this
project, I learned a lot about VirGL, Windows driver structure, and the linux graphic stack itself.
Along these skills, I also the gaps I still have.
To continue working on this subject is logical. However, switching lines to focus on the host part
may be a better way to do it regarding my abilities and the current state of the project.

Both Windows and VirGL subjects are huge, and both cannot fit in one GSoC. But this subject
has the advantage take place on the Linux part, which is open source. This allows me to
understand the behavior of surrounding components, and not only rely on a publicly disclosed
documentation.

I do not have a extensive knowledge of Vulkan. I worked on a small object viewer using it
(REPO), and understood available code on MESA and AMD’s open source loader.
It’s sure not a lot, but it’s more than what I know about D3D subsystem.

https://studiopixl.com/blog/
https://github.com/Keenuts
https://github.com/Keenuts/VulkanBasics


Understanding
This project will interact with several components of QEMU. Before starting anything, we

must be sure to understand every parts, and see how they interact together. Here is an exposé
of my current understanding of the subject. Followed by a proposal on a VirGL API.

Vulkan on Linux

The Vulkan stack is composed of several parts resumed in the following schema.

Our Vulkan application will use Vk* calls. These calls are made to a loader, which will,
depending of the application behaviour, either directly call the real driver, or layers called
‘Validation Layers’.

Validation Layers are designed to help application developers. They can check
parameters validity, dump a trace, or enable bindings for a debugging application like
RenderDoc. These layers can slow down our application a lot, and are not useful in a release
build. Thus, instead of embedding them in an usermod driver, we put them on top, and enable
them on VkInstance creation.

From now on, we will assume we are using MESA as our current Vulkan implementation.
Thus, we start with another trampoline, in MESA. This one will redirect our calls to the correct
backend.
For now, we can find two implementations: Intel’s and AMD’s. (mesa-git/src/amd/vulkan/*,
mesa-git/src/intel/vulkan/*).



By checking both implementations, we can see a lot of similarities, and even if both code bases
are independant, we can find a common trunc. (using diff on some files can be fun).
To communicate with the kernel driver, our drivers will use both generic libDRM wrappers, and
driver specific IOCTLs.
On the application side, a basic scenario would be:

- Create a VkInstance (with or without extensions and layers)
- Physical device enumeration
- Find correct memory/queue types, create command pool
- Logical device and queue creation
- Creating command buffer, swapchain, depth, etc
- shader loading, pipeline creation
- render loop

QEMU Consoles
To let the user interact with the VM gui, QEMU has a part called a “Console”.

There is several console type available, using SDL, OpenGL, or EGL.
(located qemu-git/ui/* )

Each backend will implement a “struct DisplayChangeListenerOps”. This structure is similar to a
fops struct for a char-device on Linux. It contains all the basic operations the backend
implements. This struct can be split in two parts. The upper half is valid for non-OpenGL
consoles, the bottom one contains OpenGL related functions pointers.
This struct is a part of a DisplayChangeListener, which will be used in a QemuConsole.
Now, we can implement a Console. As in real life, we have both text only consoles, and
graphical consoles. Depending of the configuration, we can use one listener, or another.

Now, we can add another layer: the QemuDisplay.
A QemuDisplay will implement two functions: init and early_init. This is basically our final display
abstraction (in the SDL case for example, it’s a GUI).



Now, in the main function, after ~1500 lines of main, we find a qemu_display_find_default, which
will choose, depending of hardcoded priorities, a DisplayOptions. Using this result,
we will call the early_init of our QemuDisplay.

VirGL Integration
As we saw, the QEMU console is an abstraction to represent a display.
On the other side, we have VirGL, which is called by the VirtioGPU device.
How both are linked ?

The first step is to look at the VirtIOGPU device declaration.
Two important things. First, the virtio_gpu_class_init function, which setup all the
VirtioDeviceClass struct.
This struct contains basic functions any VirtIO device must implement.
The “realize” function is called when the device is created. Thus, it’s the place where our display
will be linked to the GPU framebuffer.
We can now find a graphic_console_init(...) and a dpy_gfx_replace_surface(...) call.
This is the place we were looking for.

VirGL and Vulkan
Tweaking the SDL2 console to add the ability to display Vulkan based commands is one little
thing. The real deal is to add Vulkan support to VirGL itself.
Thanks to it’s independent nature, VirGL can easily be tested as a standalone OpenGL/Vulkan
application. Just replacing the guest by an userland application using a strange API.
Anyway, we are getting to the real things, time to present the project itself !



Project presentation

QEMU and VirGL
The first rule is: we cannot break everything.
A first step will be to implement the Vulkan backend itself. A simple approach would be to use
the current SDL GUI. SDL 2.0.6 provides support for Vulkan. Thus, we could add a support for
Vulkan issued frame buffers.

Now, how can we generate those frame buffers ? Are we not gonna break all display devices in
QEMU ?

A method could be to keep the GL console, and use
VK_KHR_external_memory/VK_KHR_external_memory_fd extensions to share our buffer with
OpenGL. Thus, we could mix OpenGL and Vk on VirGL, and keep the actual console model.

VirGL and Vulkan
As we saw, we could keep the Vulkan addition transparent to QEMU Consoles.
As you suggested, we shouldn’t try to do any OpenGL -> Vulkan conversion. Instead, we should
focus on Vulkan-guest to Vulkan-host interfaces. And if needed, find bridges.
The first step is to try to find what Vulkan needs, and add new API entries to VirGL.
Globally we’ll need to expose memory regions, queues, and accept SPIR-V, and have sync
primitives.

Commands we may need involve:
- Resource creations / Deletion
- Data transfer
- Command submission
- State fetch

On VkInstance creation, we create our internal state.
Then, for all discovery functions, we expose host devices, to let the guest use the best device
for his use case. So basically, we mainly forward enumerations calls to the host.
Regarding the VirGL API, it could be a single call to get all informations about the devices.

Then, we will create a lot of different objects, from simple uniform buffers to more complex
objects like pipelines.
Thus, we need to add two API points, one to create VK-objects, and one to delete them.

Once objects have been created, we need to initialize the concerned memory regions, and send
commands.
Memory mapping related functions need a transfer function, or shared mappings.



Later, for command buffers, one last command to send a guest mapped buffer. This buffer will
also contains informations about IN and OUT semaphores.
Finally, we will need some calls to get a fence state. Be able to let the guest wait for a fence.
More specific parts will be missing, like extensions to support OpenGL/Vulkan interop, and WSI.
But this can be added later.

So globally, we will have the same kind of API Virgl already propose. For now, we could start a
new set of commands, and thus, be sure to avoid regressions.
Once the API is more defines, we may find common grounds, and re-factorize the code.

Timeline
This project can definitely not fit in a single GSoC. However, we could try to find some subtasks
we could do. First thing would be to only work on the VirGL side. No Guest/Host.
We take a vulkan application, plug our ‘userland driver’ to it, and directly call VirGL functions.
No QEMU, no VMs, no complex setup, easy debug.
Once we can execute some Vulkan application, we will need to add a support for our new API in
QEMU, and write real drivers.

GSOC 12 weeks planning
The global project aim to provide a coherent API for VK-Virgl. Also a sample “ICD model”.
(userland - userland, no VM involved).

First period

Vulkan application starts, we should be able to get device state, and initialize correctly.
This implies forwarding host vulkan specs on the guest, and simulating Vulkan ICD’s behavior.
This step could be faster or longer than expected, and is here just as an indicator.

Second period

Objects can be created, and deleted on instance deletion/on request.
We should start to get some command buffers from the guest reconverted to Vulkan calls.
This step will require to serialize Vulkan object creation (which iglobaly done by the VkStruct
format of the commands).
We will also need to track these objects, and manage semaphores.

Third period

It’s hard to determine what problems we may encounter in the process, and how many times the
API will have to evolve. But the goal of the GSoC is to be able to run a basic Vulkan application
using VirGL (still on the same machine, no paravirtualization).
If by any chance, the VirGL part works, and there is time left, next step will be to add the
command parsing on QEMU.




