Talking with Cars

During my last internship, a coworked had a Toyota Yaris (2007). This car has an OBD-2 plug, and the owner was curious about what we could do with it. We had access to a simple CAN-bus probe, and some spare time.

Press & Seek

The first step is to understand what parts a linked to what packets. Our approach was to sort packets by IDs, and highlight changing bytes. Then, touch everything in the car we could think of. Once some basic informations where figured out, we could show some graphs.

CAN terminal

Talking with Cars

Stanislas, another student, worked on a fake gamepad using his Fiat500 can packets. The code base was in Python, and all values were hardcoded. We could easily improve the architecture by implementing a src->sink model inspired from GStreamer’s.

All done. PR has been merged, and here is the repo: Repository


See comments

Another project I’ve been working on during my daily commute. A raytracer(left) and a pathtracer(right).

Both available on GitHub

Raytracing cornell box Pathtracer cornell box

(Not the same Cornell box)


See comments

Several months ago started the GSoC 2017. Among all the projects available one got my attention:

Add OpenGL support on a Windows guest using VirGL

In a VM, to access real hardware, we have two methods: passthrough, and virtualization extensions (Intel VT-x, AMD-V..). When it comes to GPUs possibilities drop down to one: passtrough. Intel has a virtualization extension (GVT), but we want to support every devices. Thus, we need to fall-back to a software based method.

  • Emulation ? Since we want 3D acceleration, better forget it
  • API-forwarding ? This means we need to have the same OpenGL API between guest host, also no.
  • Paravirtualization ? Yes !

Since a couple years, VirtIO devices became a good standard on QEMU. Then, Dave Airlie started to work on VirGL and a VirtIO-gpu. Both help provide a descent virtual-GPU which rely on the host graphic stack.

This article will present VirtIO devices, and what kind of operations a guest can do using VirGL.

I also invite you to read a previous article I wrote about Linux’s graphic stack

VirtIO devices

Since we will use a VirtIO based device, let’s see how it works. First, these devices behave as regular PCI devices. We have a config space, some dedicated memory, and interruptions. Second very important point, VirtIO devices communicate with ring-buffers used as FIFO queues. This device is entirely emulated in QEMU, and can realize DMA transfers by sharing common pages between the guest and the host.

Communication queues

On our v-gpu, we have 2 queues. One dedicated to the hardware cursor, and another for everything else. To send a command in the queue, it goes like this:

  • guest: allocate pages on the host
  • guest: send a header and pointers to our physical pages (guest POV) in the ring buffer.
  • guest: send an interruption
  • VMExit
  • host: QEMU read our header and pointers. Translate addresses to match local virtual address range.
  • host: read the command, execute it
  • host: write back to ring buffer
  • host: send interruption
  • guest: handle interruption, read ring buffer and handle answer

virtio_device_communication

VirGL

VirGL can be summed up as a simple state-machine, keeping track of resources, and translating command buffers to a sequence of OpenGL calls. It exposes two kinds of commands: let’s say 2D and 3D.

2D commands are mainly focused on resources management. We can allocate memory on the host by creating a 2D resource. Then initialize a DMA transfer by linking this resource’s memory areas to guest’s physical pages. To ease resource management between applications on the guest, VirGL also adds a simple context feature. Resource creation is global, but to use them, you must attach them to the context.

Then, 3D commands. These are close to what we can find in a API like Vulkan. We can setup a viewport, scissor state, create a VBO, and draw it. Shaders are also supported, but we first need to translate them to TGSI; an assembly-like representation. Once on the host, they will be re-translated to GLSL and sent to OpenGL.

You can find a part of the spec on this repository

OpenGL on Windows

Windows graphic stack can be decomposed as follows:

windows graphic stack

Interresting parts are:

OpenGL ICD (Installable client driver):

This is our OpenGL implementation -> the state machine, which can speak to our kernel driver.

GDI.dll:

A simple syscall wrapper for us.

D3D Subsystem:

First part of the kernel graphic stack. It exposes a 3D and 2D API. Since we are not a licensed developer, let’s try to avoid this. From the documentation, we have a some functions to bypass it: DxgkDdiEscape is one. This functions takes a buffer, a size, and lets it pass trough this subsystem, directly to the underlying driver.

DOD (Display Only Driver)

Our kernel driver. This part will have to communicate to both kernel/ICD and VirtIO-gpu.

OpenGL State-Tracker

OpenGL rely on a state machine we have to implement. Let’s start by drawing on the frame-buffer.

We start a new application, want to split it from the rest. So we start by creating a VirGL context. Then create a 2D resource (800x600 RGBA seams great), and attach it to our VGL-context.

We might want to draw something now. We have two options, either use the 3D command INLINE_WRITE, or DMA. Using INLINE_WRITE means sending all our pixels through a VirtIO queue. So let’s use DMA !

  • We start by allocating our memory pages on the guest.
  • Then, send physical addresses to VirGL (guest POV)
  • VirGL will translate PA addresses to local virtual addresses, and link these pages to our resource.
  • Back to the guest, we can write our pixels to the frame-buffer.
  • To notify the V-gpu, we use the TRANSFER_TO_HOST_2D command, which tells QEMU to sync resources.

Now, let’s draw some pixels on this frame-buffer. We will need :

  • create an OpenGL context
  • setup our viewport and scissor settings (ie: screen limits)
  • create a VBO
  • link the VBO to a vertex/normals/color buffer
  • create vertex and frag shaders
  • setup a rasterizer
  • setup the frame-buffer to use the one we created earlier
  • create a constant buffer
  • send the draw call

A 3D Command is a set of UINT32. The first one is used as a header, followed by N arguments. A command buffer can contains several commands stacked together in one big UINT32 array.

Earlier, we created resources in VGL-Contexts. Now we will need 3D objects. These are created sending 3D commands, and are not shared between VGL contexts. Once created, we have to bind them to the current opengl-context.

Now, if everything goes well, we should be able to display something like that:

opengl in windows with qemu

Once more, explaining all the commands would be uninteresting, but there is a spec for that !

If you are still interested, here are couple of links:


See comments

This talk presented my ongoing project at this time:
Implement an OpenGL driver for Windows working with VirtIO-gpu.

The slides are available HERE


See comments

In January 2017, results arrived. I was accepted at the LSE, a system laboratory in my school. We were 4, and had to find a new project to work on. One wanted to work on the linux kernel security, another on Valgrind, and then, there is me. I didn’t knew how to start, but I wanted to work on something related to GPUs.

My teacher arrived, and explained the current problem with Windows and QEMU: we don’t have any hardware acceleration. Might be useful to do something about it ! I was not ready…

The first step was to understand Linux graphic stack, and then find out how Windows could have done it. Finally, how we can bring this together using Virgl3D and VirtIO queues.

This article will try present you a rapid overview of the graphic stack on Linux. There already is some pretty good articles about the userland part, so I won’t focus on that, and put some links.


OpenGL 101

Let’s begin with a simple OpenGL application:

int main(int argc, char** argv)
{
    glutInit(&argc, argv);
    glutInitWindowSize(300, 300);
    glutCreateWindow("Hello world :D");

    glClear(GL_COLOR_BUFFER_BIT);
    glBegin(GL_TRIANGLE);
        glVertex3f(0.0, 0.0, 0.0);
        glVertex3f(0.5, 0.0, 0.0);
        glVertex3f(0.0, 0.5, 0.0);
    glEnd();
    glFlush();
    return 0;
}

This is a non working dummy sample, for the idea

As we can see, there is three main steps:

  • Get a window
  • Prepare our vertices, data…
  • Render

But how can we do that ?

Linux graphic stack

linux graphic stack

Level 1: Userland, X and libGL

The first part of our code looked like this:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE);
glutInitWindowSize(300, 300);
glutInitWindowPosition(100, 100);

But in fact, actions can be resumed to something like this:

CTX = glCreateContext()
CONNECTION = xcb_connect()
xcb_create_window(CONNECTION, PARAMS, SURFACE, WINDOW)
What ? a connection, a context ?

To manage our display, Linux can use several programs. A well known is the X server. Since it’s a real server, we have to connect to it first before being able to request anything. To ease our work, we will use the lib XCB. Once a window is created, any desktop manager compatible with X will be able to display it. For more informations about an OpenGL context -> Khronos wiki

Meet Mesa

Mesa is an implementation of OpenGL on Linux. Our entry point is libGL, just a dynamic library letting us interface with the openGL runtime. The idea is the following:

  • libGL is used by an OpenGL application to interact with Mesa
  • Generic OpenGL state tracker. Shaders are compiled to TGSI and optimized
  • GPU layer : A translation layer specific to our graphic chipset
  • libDRM and WinSys: an API specific to the kernel, used interface with the DRM

  • OpenGL state tracker: from basic commands like GlBegin GlVertex3 and so on, Mesa will be able to generate real calls, to create command buffers, vertex buffers, etc… Shaders will be compiled into an intermediate representation: TGSI. A first batch of optimizations in done on this step.

  • GPU layer: We now need to translate TGSI shaders to something our GPU can understand, real instructions. We will also shape our commands for a specific chipset.

  • libDRM and WinSys: We send this data to the kernel, using this interface

With this architecture, if I want to add a support to my own graphic card, I will have to replace one part : the GPU layer

For more informations about Mesa and Gallium -> Wikipedia Another good article on the userland part -> Igalia blog

Welcome to KernelLand !

linux graphic stack

Meet the DRM

DRM: Direct Rendering Manager. This is more or less an IOCTL API composed of several modules. Each driver can add some specific entry points, but there is a common API designed to provide a minimal support. Two modules will be described: KMS and the infamous couple TTM & GEM.

Meet KMS

Remember the first step of our OpenGL application ? Ask for a window, getting a place to put some fancy pixels ? That’s the job of the KMS: Kernel Mode-setting.

A long time ago, we used UMS: user mode setting. The idea was to manage our hardware directly from userland. Problems: every application needed to support all the devices. It means a lot of code was written, again and again. And what if two applications wanted to access to the same resources ? So, KMS. But why ?

KMS

Framebuffer: a buffer in memory, designed to store pixels

The story begins with a plane. Picture it like a group of resources used to create a image. A plane can contains several framebuffers. A big one, to store the full picture, and maybe a small one, something like 64x64 for an hardware cursor ? These framebuffers can be mixed together on the hardware to generate a final framebuffer.

Now, we have a buffer storing our picture. We assigned it to a CRTC (Cathode Ray Tube Controller). A CRTC is directly linked to an ouput. It means if your card has two CRTCs, you can have two different output. Final step, printing something on the screen. A screen is connected using a standard port, HDMI, DVI, VGA… this means encoding our stream to a well defined protocol. That’s it, we have some pixels on our screen !

TTM & GEM

We can print some pixels, great ! But how can we do some fancy 3D stuff ? We have our GL calls going through some mumbo-jumbo stuff, and then what ? How can I actually write something on my GPU’s memory ?

There globally two kind of memory architecture: UMA and dedicated

  • UMA for Unified Memory Access, is used by Intel Graphics, or on some Android devices. All your memory is accessible from one memory space.
  • Dedicated memory: You can’t directly access your memory from the CPU.If you want to write it, you have to map a CPU addressable area, write your data, and then, use specific mechanisms to send it on the dedicated memory.

TTM and GEM are two different APIs designed to manage this. TTM is the old one, designed to covering every possible cases. The result is a big and complex interface no sane developer would use. Around 2008, GEM was introduced. A new and lighter API, designed to manage UMA architectures. Nowadays, GEM is often used as a frontend, but when dedicated memory management is needed, TTM is used as backend.

GEM for dummies

GEM

The main idea is to link a resource to a GEM handle. Now you only need to tell when a GEM is needed, and memory will be moved on and out our vram. But there is a small problem. To share resources, GEM uses global identifiers. A GEM is linked to a unique, global identifier. This means any program could ask for a specific GEM and get access to the resource… any.

Gladly, we have DMA-BUF. The idea is to link a buffer to a file descriptor. We add some functions to convert a local GEM identifier to a fd, and can safely share our resources.

I’ll stop here for now, but I invite you to check some articles on DMA (Direct memory access) and read this article about TTM & GEM


See comments